Transition from One- to Two-Semester(s) of Fundamentals of Programming

G. Banjac and D. Brdjanin

University of Banja Luka, Bosnia \& Herzegovina

About this presentation

- Short history of computing curricula at FEE
- Syllabus of Fundamentals of Programming (then and now)
- Examination
- Statistics
- Students' feedback
- Conclusion

${\left.\text { Undergraduate computing curricula at } \text { FEE }_{(1 / 3)}\right)}^{(1)}$

Specialization in Computing technology and Automatics started

New CC (5 y.) 1988.

The major reconstruction of undergraduate study programs took place when Computing and

Last Informatics (4 y.) study program (with profiles Computer Engineering and Software Engineering) was proposed
reconstruction has been finished in January 2014

1962.

Technical
Faculty was founded, with the Electrical Engineering undergraduate study program

1975.

Department of Electrical Engineering has grown into FEE with two study programs:
Computing technology and Automatics and Electronics and Telecommunications

Undergraduate computing curricula at $\mathrm{FEE}_{(2 / 3)}$

First year courses overview (2003-2013)

- First year courses are common for all Study Programs

$\#$	Course title	Sem.	ECTS	Hours	Type
1	Linear algebra	1	7	$3+3+0$	A
2	Fundamentals of electrotehnics	1	7	$3+2+1$	A
3	Physics	1	8	$4+2+1$	A
4	Fundamentals of computer technics	1	6	$2+0+2$	A
5	Sociology	1	2	$2+0+0$	B
6	Philosophy	1	2	$2+0+0$	B
7	Communication skills	2	2	$2+0+0$	B
8	Mathematical analysis I	2	8	$3+3+0$	A
9	Fundamentals of electrotehnics II	2	7	$3+2+1$	A
10	Programming fundamentals	2	7	$3+2+1$	A
11	Fundamentals of computer technics II		A		

Legend: A - mandatory, B - elective

Undergraduate computing curricula at FEE (3/3)

First year courses overview (2014-)

- First year courses are common for all study programs

$\#$	Course title	Sem.	ECTS	Hours	Type
1	Mathematics I	1	7	$3+3+0$	A
2	Fundamentals of electrotehnics I	1	7	$3+2+1$	A
3	Programming I	1	6	$2+2+1$	A
4	Fundamentals of computer technics	1	7	$3+2+1$	A
5	Sociology	1	3	$2+0+0$	B
6	Philosophy	1	3	$2+0+0$	B
7	Communication skills	2	3	$2+0+0$	B
8	Mathematics II	2	7	$3+3+0$	A
9	Fundamentals of electrotehnics II	2	8	$3+3+1$	A
10	Programming II	2	7	$3+2+1$	A
11	Physics		A		

Legend: A - mandatory, B - elective

Course syllabus $_{(1 / 3)}$

Programming fundamentals (7 ECTS)

- Types and levels of the programming languages. Environment for program development: editors, compilers, linkers. Program execution. Programming: basic concepts and priciples. Problem solving and algorithms.
- C programming language
- Basic structure of C program, and elements of C language.
- Variables, constants, and basic data types. Memory representation.
- Operators and expressions.
- Statements. Conditional statements. Loops, break, continue, and goto statements.
- Functions, definitions and function prototypes. Function parameters and return values.
- Complex data types: one-dimensional and multi-dimensional arrays. Structures and unions.
- Pointers. Pointers as function parameters. Dynamic memory allocation.
- Recursions and recursive functions.
- I/O communication. Files and data streams. I/O function library.

Course syllabus $_{(2 / 3)}$

Programming I (6 ECTS)

- Types and levels of the programming languages. Environment for program development: editors, compilers, linkers. Program execution. Basic concepts and priciples of programming. Problem solving and algorithms.
- C programming language
- Basic structure of C program.
- Basic data types. Variables and constants. Memory representation.
- Operators and expressions.
- Statements. Conditional statements. Loops. Break, continue, and goto statements.
- Complex data types: arrays, structures, unions.
- Function declaration and function definition. Function parameters and return values.
- Pointers. Pointers as function parameters.

Course syllabus $_{(3 / 3)}$

Programming II (8 ECTS)

- Recursions and recursive functions.
- Functions with variable number of arguments.
- Standard function libraries.
- Pointers to functions.
- I/O communication. Files and data streams. I/O function library.
- Dynamic memory allocation.
- Linear data structures: arrays, lists, stacks, queues.
- Non-linear data structures. Trees: binary trees, tree traversal. Graph basics.
- Basics of algorihtm systems. Algorithm representation techniques. Basic sorting and searching algorithms.
- String manipulation. Large number manipulation.
- Standard algorithm library.
- Algorithm complexity.

Examination

Programming fundamentals

- Practical part:
- two partial exams during semester (max. 25 points each), or
- integral exam (max. 50 points)
- Final exam (max. 50 points)

Programming I

- Practical part:
- two partial exams during semester (max. 30 points each) and online test for additional points (max. 10 points), or
- integral exam (max. 60 points)
- Final exam (max. 40 points)

Programming II

- Practical part:

First generation of students didn't have test for additional points.

Only 55\% of students took this test for additional points.

- two partial exams during semester (max. 25 points each) and work in a laboratory (max. 10 points), or
- integral exam (max. 60 points)
- Final exam (max. 40 points)

Statistics ${ }_{(1 / 6)}$

Enrolled students

Programming fundamentals

Statistics (2/6)

Enroled students

Programming II

Statistics (3/6)

Examination

Programming fundamentals

Statistics (4/6)

Examination

Statistics (5/6)

Grades

Programming I

Statistics (6/6)

Comparison with other courses

$\#$	Course title	Sem.	ECTS	Passed $(2014 / 15)$	Passed $(2015 / 16)^{*}$
1	Mathematics I	1	7	81	80
2	Fundamentals of electrotehnics I	1	7	86	86
3	Programming I	1	6	120	106
4	Fundamentals of computer technics	1	7	131	91
5	Sociology	1	3		
6	Philosophy	1	3	198	206
7	Communication skills	1	3		
8	Mathematics II	2	7	20	22
9	Fundamentals of electrotehnics II	2	8	52	49
10	Programming II	2	8	110	58
11	Physics	2	7	46	14

[^0]
Students' feedback

- ... is, generaly, positive, but with some suggestions on how to improve courses:
- "Increase the number of hours"
- "Increase the number of hours in a laboratory"
- "More homework and tasks in a laboratory"
- "Examination should be on computers (instead of paper examination)"
- "Partial exams should be on computers"

Conclusion

- Last major recontruction of undergraduate computing curricula at FEE has been finished in January 2014
- Instead of one, now we have two semesters of Fundamentals of Programming in the first year curricula
- Now, $1^{\text {st }}$ year students:
- Learn more advanced programming concepts (e.g. functions with variable number of arguments, ...) as well as basic concepts of data structures and algorithms
- Have more practical experience / more work in a laboratory
- Passing rate for the new courses is almost the same as the passing rate for the old course
G. Banjac and D. Brdjanin

University of Banja Luka, Bosnia \& Herzegovina

Transition from One- to Two-Semester(s) of
 Fundamentals of Programming

Thank You!

[^0]: * Current data

